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Abstract. Numerical modelling is a major challenge in the prevention of risks 
related to the occurrence of catastrophic phenomena. A Cellular Automata 
methodology was developed for modelling large scale (extended for kilometres) 
dangerous surface flows of different nature such as lava flows, pyroclastic flows, 
debris flows, rock avalanches, etc. This paper presents VALANCA, a first version 
of a Cellular Automata model, developed for the simulations of dense snow 
avalanches. VALANCA is largely based on SCIDDICA-SS2, the most advanced 
model of the SCIDDICA family developed for flow-like landslides. VALANCA 
adopts several of its innovations: outflows characterized by their mass centre 
position and explicit velocity. First simulations of real past snow avalanches 
occurred in Switzerland in 2006 show a satisfying agreement, concerning avalanche 
path, snow cover erosion depth and deposit thickness and areal distribution. 
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1   Introduction 

Snow avalanches are rapid gravity-driven movements of snow masses down mountain 
slopes. They may be included in the category of granular flows together with 
mudflows, debris flows, pyroclastic flows and rock avalanches. In fact, there is 
experimental evidence for snow avalanches exhibiting all the flow regimes identified 
in granular flows, from the quasi-static to the collisional, grain-inertia and 
macroviscous regimes [1].  

Dense avalanches have a high density core (100–500 kg/m3) at the bottom with 
particle sizes from 1 mm to 1 m, typical flow depths between 0.5 and 5 m and 
velocities in the range 5–40 m/s. They are a manifestation of the quasi-static and 
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collisional regimes. On the other extreme, powder snow avalanches are dilute flows 
of small snow particles (< 1 mm) suspended in the air by intense turbulence. The 
density is much lower than in dense avalanches (typically 1–10 kg/m3), but the flow 
depth (10–100 m) and average velocity (30–100 m/s) are much larger. In recent years, 
the important role of the fluidised regime, intermediate between these two end 
members, has been recognised ([1], [2], [3], [4]). Typical densities and flow velocities 
are 10–100 kg/m3 and 30–70 m/s, respectively. 

The urgent and increasing need for protection of settlements and traffic routes from 
snow avalanches has led to several approaches for modelling avalanches over the past 
90 years [5]. 

There is a wide variety of fluid mechanics-based models; they differ in complexity 
and also with regard to the type of avalanche they describe [5]. Dense snow 
avalanches can be described by mass-point models, e.g. [6], or continuum models 
based on the Navier–Stokes or Saint-Venant equations, with a constitutive equation 
appropriate for flowing snow. In the case of powder snow avalanches and slush flows, 
it may be necessary to use binary mixture theory to describe the dynamics of the 
particles and the interstitial fluid satisfactorily [7]. Models of the Saint-Venant type 
exploit that snow avalanches (and in particular dense avalanches) are shallow flows 
by integrating the balance equations of mass and momentum (and energy) over the 
direction perpendicular to the ground ([5], [8] ,[9]) for more details and references to 
the original works. 

A different approach, based on the computational paradigm of Cellular Automata, 
was adopted by Barpi et al. [10], that developed the model ASCA (cf. Section 2.2) for 
the simulation of snow avalanches. ASCA simulations of avalanches, that occurred in 
Susa Valley (Western Italian Alps), were able to reproduce the correct three-
dimensional avalanche path and the order of magnitude of the avalanche deposit. 

Kronholm et al.[11], instead, used a Cellular Automata based model to show how 
the spatial structure of shear strength may be critically important for avalanche 
fracture propagation.  

A Cellular Automata (CA), at the basis of the model presented in this work, 
evolves in a discrete space-time. Space is partitioned in cells of uniform size, each 
cells embeds a Finite Automaton (FA) computing unit, that changes the cell state 
according to the states of the neighbour cells, where the neighbourhood conditions are 
determined by a pattern invariant in time and space [12]. An extension of classical CA 
[12] was developed in order to model many complex macroscopic fluid-dynamical 
phenomena, that seem difficult to be modelled in other CA frames (e.g. the lattice 
Boltzmann method), because they take place on a large space scale.  

Such CA can need a large amount of states, that describe properties of the cells 
(e.g. temperature); such states may be formally represented by means of sub-states, 
that specify the characteristics to be attributed to the state of the cell and determining 
the CA evolution. It involves a large amount of states more a complicated transition 
function, not reducible to a lookup table. 

In the case of surface flows, quantities concerning the third dimension, i.e. the 
height, may be easily included among the CA sub-states (e.g. the altitude), permitting 
models in two dimensions, working effectively in three dimensions. Furthermore, an 
algorithm for the minimisation of the differences (in height) [12], [13] was found in 
this context in order to determine the outflows from a cell toward the remaining cells 
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of its neighbourhood, giving rise to several models for different macroscopic 
phenomena: lava flows [12], debris/mud flows [12] and rain soil erosion [14]. 

Explicit velocity solution is adopted: moving flows toward the neighbouring cells 
are individuated by the sub-states mass, velocity and mass centre co-ordinates. The 
resulting new mass, mass centre and velocity are computed by composition of all the 
inflows from the neighbours and the residual quantities inside the cell [15], [16].  

This paper illustrates VALANCA (it is the Sicilian word for avalanche and 
acronym for “Versatile model of Avalanche propagation by LAws and Norms of 
Cellular Automata”), a new model for the simulation of snow avalanches. 
VALANCA profits of studies of Barpi et al. [10] but it included new features [13] of 
SCIDDICA-SS2, ([15], [16]), the most advanced model of the SCIDDICA family for 
flow-like landslides, developed by some authors of this paper. Some differences, with 
respect to the ACSA model by Barpi et al., are presented in Section 2.2. 

The next section defines the model VALANCA, while the simulation results of 
two snow avalanches in Davos (Switzerland) are shown in the third section. 

2   The Model VALANCA 

VALANCA is a two-dimensional CA with hexagonal cells, the state of cell is 
specified by sub-states, the transition function is constituted by local “elementary” 
processes, applied sequentially:  

VALANCA =  

where 

•  is the set of regular hexagons covering the region, where the phenomenon evolves.  
• X identifies the geometrical pattern of cells, which influence any state change of the 

central cell: the central cell (index ) itself and the six adjacent cells (indexes ). 
•  is the finite set of states of the finite automaton, embedded in the cell; it is equal to 

the Cartesian product of the sets of the considered sub-states: 
 

o  is the cell altitude. 
o  is the snow cover depth, that could change into avalanche mass by erosion 

(Fig.1). 
o is the average thickness of avalanche mass inside the cell (Fig.1), SX and SY 

are the co-ordinates of the mass centre with reference to the cell centre.  
o is the kinetic head of avalanche mass inside the cell (Fig.1).. 
o  is the part of avalanche mass, the so called “external flow”, (normalised to a 

thickness) that penetrates the adjacent cell from central cell,   and   are the 
co-ordinates of the external flow mass centre with reference to the adjacent cell 
centre,  is the kinetic head of avalanche mass flow. There are six 
components (one for each adjacent cell) for the sub-states . 

o  is the part of avalanche mass toward the adjacent cell, the so called “internal 
flow”, (normalised to a thickness) that remains inside the central cell,   and 

 are the co-ordinates of the internal flow mass centre with reference to the 
central cell centre,  is the kinetic head of avalanche mass flow. There are six 
components (one for each adjacent cell) for the sub-states  
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•  is the set of the global physical and empirical parameters, which account for the 
general frame of the model and the physical characteristics of the phenomenon; the 
next section provides a better explication of the elements of the following set:  

 
o  is the cell apothem;  
o is the temporal correspondence of a CA step; 
o  is the friction coefficient for avalanche outflows; 
o  are parameters for energy dissipation by turbulence and erosion; 
o  is the activation thresholds of the snow mobilisation; 
o  is the progressive erosion parameters; 

•  is the deterministic state transition for the cells in . The basic elements 
of the transition function will be sketched in the next section. 

 
At the beginning of the simulation, we specify the states of the cells in  , defining 

the initial CA configuration. The initial values of the sub-states are accordingly 
initialised. In particular,  assumes the morphology values;  assumes initial values 
corresponding to the maximum depth of the snow mantle cover except for the 
detachment area, where the thickness of the detached avalanche mass is subtracted 
from snowpack depth;  is zero everywhere except for the detachment area, where 
the thickness of detached avalanche mass inside the cell is specified; all values related 
to the remaining sub-states are zero everywhere.  

At each next step, the function τ is applied to all the cells in , so that the 
configuration changes in time and the evolution of the CA is obtained. 

 

Fig. 1. Left: three-dimensions visualization of the sub-states SA, SD, STH and SKH for a hexagonal 
cell. Right: an ideal vertical section of a snow flow. 

2.1   The VALANCA Transition Function 

Four local processes may be considered for VALANCA:  

− snow cover, kinetic head and avalanche thickness variation by snow cover 
mobilisation; 

− kinetic head variation by turbulence dissipation; 
avalanche outflows (height, mass centre co-ordinates, kinetic head) determination 
and their shift deduced by the motion equations; 

− composition of avalanche mass inside the cell (remaining avalanche more inflows) 
and determination of new thickness, mass centre co-ordinates, kinetic head.  

KH 

T
H D 

run up 

A 

snow cover 

detached snow mass 

kinetic head 

soil 

KH 

TH 
D 



 Development and Calibration of a Preliminary Cellular Automata Model 87 

In the following, a sketch of the local elementary processes will be given, which is 
sufficient to capture the mechanisms of the transition function; the execution of an 
elementary process updates the sub-states. Variables concerning sub-states and 
parameters are indicated by their abbreviations in the subscripts. When sub-states 
need the specification of the neighbourhood cell, index is indicated between square 
brackets.  means variation of the value of the sub-state . 

Mobilisation Effects. When the kinetic head value overcomes an opportune 
threshold  depending on the snow cover features then a mobilisation of the 
snow cover occurs proportionally to the quantity overcoming the threshold: 

 (the snow cover depth diminishes as the avalanche 
thickness increases), the kinetic head loss is: . The mixing of 
the eroded snow cover with the earlier avalanche mass involves that the earlier kinetic 
energy of avalanche mass becomes the kinetic energy of all the avalanche mass, it 
implicates trivially a further kinetic head reduction. 

Turbulence Effect. The effect of the turbulence is modelled by a proportional kinetic 
head loss at each VALANCA step:  . This formula involves that a 
velocity limit is imposed “de facto”. A generic case with a maximum value of slope 
may be always transformed in the worst case of an endless channel with constant 
maximum value slope. In this case an asymptotic value of kinetic head is implied by 
infinite formula applications and, therefore, a velocity limit is deduced. 

Avalanche Mass Outflows. Outflows computation is performed in two steps: 
determination of the outflows minimising the “height” differences in the neighbourhood 
[12] [13] and determination of the shift of the outflows.  

The minimisation algorithm defines a central cell quantity  to be distributed, 
 where  is the flow towards the cell i (  is the part of , which 

remains in the central cell);  are the quantities that specify the “height” 
of the cells in the neighbourhood, to be minimised by contribution of flows: more 
precisely, the algorithm minimises the expression [16]:  

 (1) 

Avalanches are rapid flows and imply a run up effect, depending on the kinetic 
head associated to debris flow. As a consequence, the height minimisation algorithm 
[17] [18] is applied, considering for the central cell  ]  
and the ; ,  for the adjacent cells; 
note that   accounts for the ability of climbing a slope for the flowing 
avalanche. The minimisation algorithm determines the flows  toward 
the neighbouring cells (  is the part of  which is not distributed); such flows 
minimise the expression (1). 

The mass centre co-ordinates    and    of moving quantities are the same of all the 
avalanche mass inside the cell and the form is ideally a “cylinder” tangent the next 
edge of the hexagonal cell (Fig.2). The height difference  determines 
an ideal slope  between the two cells  and ; a preliminary test is executed in 
order to account the friction effects, that prevent avalanche outflows, when  

 . An ideal length “ ” is considered between the avalanche mass centre 
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of central cell and the centre of the adjacent cell  including the slope , it 
represents the maximum allowed path of the outflow.  

The  shift “sh” is computed for avalanche outflow according to the following 
simple formula, that averages the movement of all the mass as the mass centre 
movement of a body on a constant slope with a constant friction coefficient:  

, with “ ” the gravity acceleration, the initial 
velocity .

The motion involves three possibilities: (1) only internal flow, the shifted cylinder 
is completely internal to the central cell; (2) only external flow, all the shifted cylinder 
is external to the central cell inside the adjacent cell; (3) the shifted cylinder is 
partially internal to the central cell, partially external to the central cell, the flow is 
divided between the central and the adjacent cell, forming two cylinders with mass 
centres corresponding to the mass centres of the internal flow and the external flow.  

The kinetic head variation is computed according to the new position of internal 
and external flows, while the energy dissipation was considered as a turbulence effect 
in the previous elementary process.  

 

 

 
Fig. 2. Determination of the outflow shift. (a) All the cylinder remains in the cell: the flow is 
only internal and contributes to change the new centre mass of the cell. (b) All the cylinder 
leaves the cell: the flow is only external. (c) Part of the cylinder crosses the cell: there are both 
internal and external flows. 

 
Flows Composition.  When avalanche mass outflows are computed, the new situation 
involves that external flows leave the cell, internal flows remain in the cell with 
different co-ordinates and inflows (trivially derived by the values of external flows of 
neighbour cells) could exist. The new value of  is given, considering the balance of 
inflows and outflows with the remaining snow mass in the cell. A kinetic energy 
reduction is considered by loss of flows, while an increase is given by inflows: the 
new value of the kinetic head is deduced from the computed kinetic energy. The co-
ordinates determination is calculated as the average weight of  and  considering the 
remaining snow mass in the central cell, the internal flows and the inflows. 

c 

b a
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2.2   Some Relevant Differences between VALANCA and ASCA 

ASCA [10] is a CA model for the simulation of snow avalanches, with many 
analogies with VALANCA. As a matter of fact, both are two-dimensions models 
based on hexagonal cells and are ruled by the same flow distribution algorithm [11]. 
The models distinctions are synthesized in the following points. 

ASCA shares with many CA models [12] an approach, that doesn’t permit to make 
velocity explicit: a fluid amount moves from a cell to another one in a CA step, which 
corresponds usually to a constant time. This implies a constant local “velocity” in the 
CA context of discrete space/time, even if a kind of flow velocity emerges by 
averaging on the space (i.e. considering clusters of cells) or by averaging on the time 
(e.g. considering the average velocity of the advancing flow front in a sequence of CA 
steps). VALANCA, instead, inherits characteristics of the lasts releases of SCIDDICA 
([15], [16]), that introduce coordinates of mass centre of flows and computes their 
shift.. In this case, velocity is locally explicit (cf. Section 2.1 ). The introduction of 
mass centers have introduced improvements in simulations in terms of fitness, despite 
a slight worsening in execution times over the considered simulations. 

Note that energy losses related to the kinetic head (cf Section 2.1) are handled in 
ASCA according different formulae, deduced by approaches of PDE type. 

In ASCA, the considered test-case snow avalanche was extremely rapid and thus 
characterised by relevant run-up effects, whose physical meaning is the minimum 
height of an obstacle needed to stop the motion of a mass with thickness moving at a 
certain velocity. Here, the run-up is determined by the thickness of the snow plus a 
fictitious height, which corresponds to the kinetic head and represents (Fig.1), in the 
minimization process, a conservative quantity which has to be distributed among the 
neighboring cells in order to reach the conditions of maximum stability. At the 
contrary, in the VALANCA model, the run-up effect for fast moving snow avalanches 
is expressed in a different manner. Here, the kinetic head is not considered as a whole 
with the snow (i.e., it is not considered as a mobile part during the minimization 
process) but computed separately from it in order to explicitly consider the physical 
characteristics related to energy loss and avalanche velocity related to the kinetic head 
itself (cf. Section 2.1 ). 

3   VALANCA Applications to Real Cases of Snow Avalanches 

VALANCA was developed in ANSI C++ in order to obtain both a well structured and 
extensible source code. The program is characterised by a command line interface that 
allows the user to interactively control all input/output and simulation, in order that 
the user can to visualize the simulation in real time. Through the viewer module, it is 
also possible to observe the DTM over which the phenomenon evolves and perform 
both a visual and quantitative comparison with the real case in terms of the fitness 
function fa, later defined. A first validation and calibration of the parameters of 
VALANCA have been performed by back-simulating two snow avalanches in Davos 
(Switzerland) occurred in 2006 and well described in Errera [19]. The same set of  
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parameters have permitted to reproduce the two considered snow avalanches with a 
great level of accuracy. 

First calibrations were performed as usual by a preliminary trial and error method; 
results were enough good that it was not necessary to use our automatic “long time” 
calibration  techniques [20] (e.g. by means of Genetic Algorithms). 

Simulation times depend on the number of active cells processed for each step and 
on the number of steps, necessary to complete the phenomenon: 10000 cells in a step 
last approximately 0.5 s for a 2.4GHz dual-core PC. Gotschnawang takes about three 
minutes with a 199 x 283 matrix excluding interactive graphical output.  

During winter season the Davos area is affected by a big number of events. 
Furthermore, test avalanches were selected since they were well known in terms of 
areal path, thickness, deposit, velocity during the propagation etc.  

The first event analysed (Gotschnawang) is quite challenging since it occurred in 
an open slope, while the second one (Rüchitobel) represents an interesting example of 
channelled snow avalanche. Detailed data of snow avalanches were available, among 
them the release area and volume, avalanche path, the spatial distribution and local 
thickness of the final deposit, the snow density in the snow cover and in the deposit. 
Furthermore, in a few cases the propagation velocities could be estimated at specific 
points. Snow cover entrainment occur in both cases, and also traces of fluidized flow 
were detected. However, the model simulates, as first attempt, only dense flows.  

Both events were simulated by using a 5 m cell-size DTM of the area derived from 
aereophotogrammetry. Several simulations were performed in order to calibrate the 
parameters and best results are described in what follows. 

Fig. 3. Gotschnawang avalanche. Outline of the 2006-01-20 Gotschnawang avalanche (Davos, 
Switzerland). The extent of the fracture line is indicated by the dotted line. 

A first comparison between the real events and the simulated ones is performed by 
a fitness function  [20] concerning areas and computed by the following formula 

 , where  is the set of cells affected by the avalanche in the real 
event and   the set of cells affected by the avalanche in the simulation. It returns a 
normalised value between 0 (complete failure) and 1 (perfect simulation). Further 
comparisons for good values of   are performed on erosion and deposits. 
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deep deposits from this avalanche, stacked over those from earlier ones, while the new 
snow was eroded completely.  

On the upper parts of the gully banks and to the sides, the traces of fluidised layer 
were clearly observable to a height of 10–15 m above the gully bottom in that the 
snow was completely eroded away, without any deposits. In the most pronounced 
bend, the angle between the top flow marks of the fluidised part on either side and the 
tilt of the surface of the dense deposit indicated maximum flow velocities 28–38 m/s 
and 10–20 m/s, respectively. 

 

Fig. 5. Rüchitobel avalanche. Outline of the 2006-01-18 Rüchitobel avalanche (Davos, Switzerland). 
The extent of the fracture line is indicated by the top dotted line. 

On the left-hand side and also at the distal end of the runout area, the deposit 
showed the characteristic features expected from fluidised flow. The mass of the 
dense deposit was estimated at 4000 tons while the fluidised one was only 40–50 tons 
(1% of the avalanche mass).  

The snow avalanche was back-analysed by the VALANCA model by using a 5 m 
cells DTM by taking into account the release area, the portion of the slope covered by 
the snow mass and the erosion during the propagation. The best simulation results 
corresponded to a value of  close to 0.81 which is considered a satisfying 
preliminary result if the complex geometry of the avalanche path is taken into account 
(Fig.6). 
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Fig. 6. The 2006 avalanche in Rüchitobel: (a) snow cover with detachment area and real event, 
(b) post-event DEM, superposition (3) of real (1) and simulated (2) event 

4   Conclusions 

The CA model VALANCA has been developed which is suitable for the simulation of 
snow avalanche dynamics. Preliminary validation and calibration of the model have 
been performed by back-analysing the Rüchitobel and Gotschnawang 2006 snow 
avalanches. Preliminary results, discussed in this paper, prove the ability of the model 
to simulate such a type of events in a satisfying way. The real path of the snow 
avalanche has been well simulated in both open and channelled slopes. However in 
spite of the encouraging results several improvements (mainly in the numerical 
management of the erosion and snow entrainment and in the avalanche velocity) are 
still needed in order to use such a model for forecasting analyses of snow avalanches 
propagation and their interaction with structures and human settlements.  

Furthermore, we are confident that VALANCA could be usefully used in hazard 
analyses for snow avalanches. With this aim, applications to other cases of different 
type of snow avalanches have been already planned.  
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